Peak fitting
Rampy does not (yet) offer a dedicated function for peak fitting. Instead, we invite users to use lmfit or scipy.optimize to perform peak fitting, which is basically the action to fit a model (sum of peaks) to your data.
We provide an example of peak-fitting with the lmfit for instance here: Example notebooks .
Peak shapes
Rampy offers functions for various peak shapes, including:
gaussian peaks >
rampy.gaussian
lorentzian peaks >
rampy.lorentzian
pseudo-voigt peaks >
rampy.pseudovoigt
pearson7 peaks >
rampy.pearson7
- rampy.peak_shapes.gaussian(x: ndarray, amp, freq, HWHM) ndarray
Computes a Gaussian peak.
- Parameters:
x (np.ndarray) – Positions at which the signal should be sampled.
amp (float or np.ndarray) – Amplitude of the Gaussian peak.
freq (float or np.ndarray) – Frequency/position of the Gaussian component.
HWHM (float or np.ndarray) – Half-width at half-maximum.
- Returns:
The computed Gaussian signal.
- Return type:
np.ndarray
Notes
Formula used: ( ext{amp} cdot exp(-log(2) cdot ((x - ext{freq}) / ext{HWHM})^2) ).
Examples
You can create a single peak like:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.gaussian(x, 10., 3., 1.0)
You can also create an array with several peaks in columns using arrays for the peak parameters:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.gaussian(x.reshape(-1, 1), np.array([[10, 10.]]), np.array([[3, 7.]]), np.array([[1., 1.]]))
In this case, y will be an array of shape (len(x), 2) with one peak per columns. Your peaks can even share parameters, here the HWHM:
>>> y = rp.gaussian(x.reshape(-1, 1), np.array([[10, 10.]]), np.array([[3, 7.]]), 2.0)
The composite signal is simply given by
>>> y_sum = np.sum(y, axis=1)
- rampy.peak_shapes.lorentzian(x: ndarray, amp, freq, HWHM) ndarray
Computes a Lorentzian peak.
- Parameters:
x (np.ndarray) – Positions at which the signal should be sampled.
amp (float or np.ndarray) – Amplitude of the Lorentzian peak.
freq (float or np.ndarray) – Frequency/position of the Lorentzian component.
HWHM (float or np.ndarray) – Half-width at half-maximum.
- Returns:
The computed Lorentzian signal.
- Return type:
np.ndarray
Notes
Formula used: ( ext{amp} / (1 + ((x - ext{freq}) / ext{HWHM})^2) ).
Examples
You can create a single peak like:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.lorentzian(x, 10., 3., 1.0)
You can also create an array with several peaks in columns using arrays for the peak parameters:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.lorentzian(x.reshape(-1, 1), np.array([[10, 10.]]), np.array([[3, 7.]]), np.array([[1., 1.]]))
In this case, y will be an array of shape (len(x), 2) with one peak per columns. Your peaks can even share parameters, here the HWHM:
>>> y = rp.lorentzian(x.reshape(-1, 1), np.array([[10, 10.]]), np.array([[3, 7.]]), 2.0)
The composite signal is simply given by
>>> y_sum = np.sum(y, axis=1)
- rampy.peak_shapes.pearson7(x, a0, a1, a2, a3)
Computes a Pearson VII peak.
- Parameters:
x (np.ndarray) – Positions at which the signal should be sampled.
a0 (float or np.ndarray) – Amplitude parameter.
a1 (float or np.ndarray) – Frequency/position parameter.
a2 (float or np.ndarray) – Width parameter.
a3 (float or np.ndarray) – Shape parameter.
- Returns:
The computed Pearson VII signal.
- Return type:
np.ndarray
Notes
Formula used: ( a_0 / ((1 + ((x - a_1) / a_2)^2 cdot (2^{(1/a_3)} - 1))^{a_3}) ).
Examples
You can create a single peak like:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.pearson7(x, 10., 3., 1.0, 0.5)
You can also create an array with several peaks in columns using arrays for the peak parameters:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.pearson7(x.reshape(-1, 1), np.array([[10, 10]]), np.array([[3, 7]]), np.array([[1., 1.]]), np.array([[0.5, 0.5]]))
In this case, y will be an array of shape (len(x), 2) with one peak per columns. Your peaks can even share parameters, here the a3:
>>> y = rp.pearson7(x.reshape(-1, 1), np.array([[10, 10]]), np.array([[3, 7]]), np.array([[1., 1.]]), 0.5)
The composite signal is simply given by
>>> y_sum = np.sum(y, axis=1)
- rampy.peak_shapes.pseudovoigt(x: ndarray, amp, freq, HWHM, L_ratio) ndarray
Computes a pseudo-Voigt peak.
- Parameters:
x (np.ndarray) – Positions at which the signal should be sampled. Can be a vector or array.
amp (float) – Amplitude of the pseudo-Voigt peak.
freq (float or np.ndarray) – Frequency/position of the Gaussian component.
HWHM (float or np.ndarray) – Half-width at half-maximum.
L_ratio (float) – Ratio of the Lorentzian component. Must be between 0 and 1 inclusive.
- Returns:
The computed pseudo-Voigt signal.
- Return type:
np.ndarray
- Raises:
ValueError – If L_ratio is not between 0 and 1.
Notes
- Formula used: ( (1 - L_{ ext{ratio}}) cdot ext{gaussian}(x, ext{amp}, ext{freq}, ext{HWHM}) +
L_{ ext{ratio}} cdot ext{lorentzian}(x, ext{amp}, ext{freq}, ext{HWHM}) ).
Examples
You can create a single peak like:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.pseudovoigt(x, 10., 3., 1.0, 0.5)
You can also create an array with several peaks in columns using arrays for the peak parameters:
>>> x = np.linspace(0, 10, 1000) >>> y = rp.pseudovoigt(x.reshape(-1, 1), np.array([[10, 10]]), np.array([[3, 7]]), np.array([[1., 1.]]), np.array([[0.5, 0.5]]))
In this case, y will be an array of shape (len(x), 2) with one peak per columns. Your peaks can even share parameters, here the L_ratio:
>>> y = rp.pseudovoigt(x.reshape(-1, 1), np.array([[10, 10]]), np.array([[3, 7]]), np.array([[1., 1.]]), 0.5)
The composite signal is simply given by
>>> y_sum = np.sum(y, axis=1)
Peak areas
Peak area can be calculated using the rampy.peakarea
function.
- rampy.peak_area.gaussianarea(amp, HWHM, **options)
returns the area of a Gaussian peak
- Parameters:
amp (float or ndarray) – amplitude of the peak
HWHM (float or ndarray) – half-width at half-maximum
eseAmplitude (float or ndarray, optional) – standard deviation on amp; Default = None
eseHWHM (float or ndarray, optional) – standard deviation on HWHM; Default = None
- Returns:
peak area esearea (float or ndarray): error on peak area; will be None if no errors on amp and HWHM were provided.
- Return type:
area (float or ndarray)
- rampy.peak_area.peakarea(shape: str, amp: float, HWHM: float, pos: float = None, a3: float = None, L_ratio: float = None, ese_amp: float = None, ese_HWHM: float = None) tuple[float, float | None]
Computes the area of a peak given its shape and parameters.
For Gaussian peaks, the area is calculated analytically. For other shapes (Lorentzian, pseudo-Voigt, Pearson VII), the area is calculated using numerical integration (trapezoidal rule).
- Parameters:
shape (str) – The shape of the peak. Must be one of ‘gaussian’, ‘lorentzian’, ‘pseudovoigt’, or ‘pearson7’.
amp (float, list of floats, or np.ndarray) – Amplitude of the peak.
HWHM (float, list of floats, or np.ndarray) – Half-width at half-maximum of the peak.
pos (float, list of floats, np.ndarray, optional) – Peak position (required for non-Gaussian shapes). Default is None.
a3 (float, list of floats, np.ndarray, optional) – Shape parameter for Pearson VII peaks. Required if shape=’pearson7’.
L_ratio (float, list of floats, np.ndarray, optional) – Lorentzian component ratio for pseudo-Voigt peaks. Must be between 0 and 1. Required if shape=’pseudovoigt’. Default is None.
ese_amp (float, list of floats, np.ndarray, optional) – Standard deviation of the amplitude. Used to calculate error on area. Default is None.
ese_HWHM (float, list of floats, np.ndarray, optional) – Standard deviation of HWHM. Used to calculate error on area. Default is None.
- Returns:
- A tuple containing:
area (float): The computed area of the peak.
ese_area (float or None): The error on the computed area if ese_amp and ese_HWHM are provided; otherwise, None.
- Return type:
tuple[float, float | None]
- Raises:
ValueError – If required parameters are missing or invalid, or if the list of floats or the np.ndarray for the peak parameters have different sizes.
NotImplementedError – If an unsupported shape is specified.
Notes
For Gaussian peaks, the formula used is: ( ext{area} = sqrt{pi / ln(2)} cdot ext{amp} cdot ext{HWHM} ).
For other shapes, numerical integration is performed over a range of ( pm 10 cdot ext{HWHM} ).
Example
Compute the area of a Gaussian peak:
>>> amp = 10 >>> HWHM = 2 >>> area, ese_area = peakarea("gaussian", amp=amp, HWHM=HWHM) >>> print(area)
Compute the area of a Lorentzian peak with numerical integration:
>>> amp = 10 >>> HWHM = 2 >>> pos = 5 >>> area, _ = peakarea("lorentzian", amp=amp, HWHM=HWHM, pos=pos) >>> print(area)
Compute the area of several Lorentzian peaks with numerical integration (beware that in this case, the lists should have equal sizes):
>>> amp = [10., 5., 3.] >>> HWHM = 2 # they share a common width >>> pos = [2., 5., 5.5] >>> area, _ = peakarea("lorentzian", amp=amp, HWHM=HWHM, pos=pos) >>> print(area)
Propagate uncertainties
The best way to propagate the uncertainties of your model is to directly use the uncertainties
package, see the docs here.