Maps
Rampy offers the possiblity to analyse maps from Raman spectrometers using the rampy.maps
module.
Line and 2D Maps saved in CSV or TXT format from Horiba and Renishaw spectrometers can be loaded, and various data treatments can be performed afterwards.
Below you will find the documentation of the rampy.maps
module, and have a look at the example notebooks too for further examples of use: Example notebooks
- class rampy.maps.maps(file, spectrometer_type='horiba', map_type='2D', despiking=False, neigh=4, threshold=3)
A class for treating maps of Raman spectra.
- Parameters:
file (str) – Filename including path
spectrometer_type (str, optional, default="horiba") – Type of spectrometer, choose between “horiba” or “renishaw”
map_type (str, optional, default="2D") – Type of map, choose between “2D” or “1D”
despiking (bool, optional, default=False) – Whether to apply despiking to remove spikes from the spectra
neigh (int, optional, default=4) – Number of points around spikes to select for calculating average value for despiking
threshold (int, optional, default=3) – Multiplier of sigma (RMSE) for spike detection
Note
The class automatically flips the frequency axis if it’s decreasing to ensure it’s always increasing.
- background(bir, method='poly', **kwargs)
Correct a background from the initial signal I on a map using rampy.baseline.
- Parameters:
bir (ndarray) – Arrays of the background interpolation regions
method (str, optional, default="poly") – Method for baseline correction, see rampy.baseline documentation for available methods
**kwargs –
Additional parameters for rampy.baseline()
- Returns:
None, but sets self.I_background and self.I_corrected attributes
- normalise(y, method='intensity')
Normalise the spectra to their max intensity, their area, or min-max normalisation.
- Parameters:
y (ndarray) – The intensities to normalise (e.g., self.I_corrected)
method (str, optional, default="intensity") – Method used, choose between “area”, “intensity”, “minmax”
- Returns:
None, but sets self.I_normalised attribute
- smooth(y, method='whittaker', **kwargs)
Uses the smooth function of rampy to smooth the signals.
- Parameters:
y (ndarray) – The intensities to smooth (e.g., self.I_corrected)
method (str, optional, default="whittaker") – Method for smoothing the signal
**kwargs –
Additional parameters for the smoothing method
- Returns:
None, but sets self.y_smoothed attribute
- centroid(y, region_to_investigate)
Calculate the centroid in a given region of interest.
- Parameters:
y (ndarray) – The intensities to analyze (e.g., self.I_normalised)
region_to_investigate (1x2 array) – The x values of regions where the centroid will be measured
- Returns:
None, but sets self.centroid_position attribute
- intensity(y, region_to_investigate)
Get the maximum intensity in the region to investigate.
- Parameters:
y (ndarray) – The intensities to consider (e.g., self.I_normalised)
region_to_investigate (1x2 array) – The x values of regions where the intensity will be measured
- Returns:
None, but sets self.I_max attribute
- area(y, region_to_investigate)
Get the area under the curve in the region to investigate.
- Parameters:
y (ndarray) – The intensities to consider (e.g., self.I_normalised)
region_to_investigate (1x2 array) – The x values of regions where the area will be measured
- Returns:
None, but sets self.A attribute
- intensity_ratio(y, region_to_investigate)
Get the intensity ratio between two regions of interest.
- Parameters:
y (ndarray) – The intensities to consider (e.g., self.I_normalised)
region_to_investigate (2x2 array) – The x values of regions where the intensity ratios will be measured
- Returns:
None, but sets self.I_ratio attribute
- area_ratio(y, region_to_investigate)
Get the area ratio between two regions of interest.
- Parameters:
y (ndarray) – The intensities to consider (e.g., self.I_normalised)
region_to_investigate (2x2 array) – The x values of regions where the areas will be measured
- Returns:
None, but sets self.A_ratio attribute
- rampy.maps.read_renishaw(file)
Read Renishaw csv maps.
- Parameters:
file (str) – Filename including path
- Returns:
Tuple containing (X, Y, lambdas, intensities)
- Return type:
tuple
X: m by n array of X positions
Y: m by n array of Y positions
lambdas: m by n array of Raman shifts
intensities: m by n array of intensities
- rampy.maps.read_horiba(file, map_type='2D')
Read Horiba csv maps (1D, 2D).
- Parameters:
file (str) – Filename including path
map_type (str, optional, default="2D") – 1D map (line) or 2D map
- Returns:
For 2D maps: Tuple containing (X, Y, lambdas, intensities)
- Returns:
For 1D maps: Tuple containing (X, lambdas, intensities)
- Return type:
tuple
- Raises:
ValueError – If map_type is not ‘1D’ or ‘2D’
- rampy.maps.peak(X, Y, lambdas, intensities, function, Xrange, amp, Xmean, sigma, y0, A)
Fit peaks in a map. Work in progress.
- Parameters:
X (ndarray) – X positions
Y (ndarray) – Y positions
lambdas (ndarray) – Raman shifts
intensities (ndarray) – Intensities
function (str) – Type of function to fit (‘gauss’ or ‘lorenz’)
Xrange (list or ndarray) – Range of X values to fit
amp (float) – Initial amplitude
Xmean (float) – Initial mean position
sigma (float) – Initial width
y0 (float) – Initial y-offset
A (float) – Initial area
- Returns:
Tuple containing (results, rmap)
- Return type:
tuple